翻訳と辞書
Words near each other
・ Jnet
・ JNG
・ JNJ-26489112
・ JNJ-26990990
・ JNJ-42847922
・ JNJ-5207852
・ JNJ-7777120
・ JNJ-7925476
・ JNJ-Q2
・ JNL
・ JLL Partners
・ Jlloyd Samuel
・ JLM
・ JLN
・ JLO (disambiguation)
JLO cocycle
・ JLP
・ JLP-40 Radar
・ JLR
・ JLS
・ JLS (album)
・ JLS (disambiguation)
・ JLS discography
・ JLS Tour
・ JLT
・ JLT (album)
・ JLT (John Lindberg Trio)
・ JLT Novices' Chase
・ JLT-Condor
・ JLTIET UAV


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

JLO cocycle : ウィキペディア英語版
JLO cocycle
In noncommutative geometry, the JLO cocycle is a cocycle (and thus defines a cohomology class) in entire cyclic cohomology. It is a non-commutative version of the classic Chern character of the conventional differential geometry. In noncommutative geometry, the concept of a manifold is replaced by a noncommutative algebra \mathcal of "functions" on the putative noncommutative space. The cyclic cohomology of the algebra \mathcal contains the information about the topology of that noncommutative space, very much as the de Rham cohomology contains the information about the topology of a conventional manifold.
The JLO cocycle is associated with a metric structure of non-commutative differential geometry known as a \theta-summable Fredholm module (also known as a \theta-summable spectral triple).
== \theta-summable Fredholm modules ==

A \theta-summable Fredholm module consists of the following data:
(a) A Hilbert space \mathcal such that \mathcal acts on it as an algebra of bounded operators.
(b) A \mathbb_2-grading \gamma on \mathcal, \mathcal=\mathcal_0\oplus\mathcal_1. We assume that the algebra \mathcal is even under the \mathbb_2-grading, i.e. a\gamma=\gamma a, for all a\in\mathcal.
(c) A self-adjoint (unbounded) operator D, called the ''Dirac operator'' such that
:(i) D is odd under \gamma, i.e. D\gamma=-\gamma D.
:(ii) Each a\in\mathcal maps the domain of D, \mathrm\left(D\right) into itself, and the operator \left():\mathrm\left(D\right)\to\mathcal is bounded.
:(iii) \mathrm\left(e^\right)<\infty, for all t>0.
A classic example of a \theta-summable Fredholm module arises as follows. Let M be a compact spin manifold, \mathcal=C^\infty\left(M\right), the algebra of smooth functions on M, \mathcal the Hilbert space of square integrable forms on M, and D the standard Dirac operator.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「JLO cocycle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.